A Practical Hierarchical Model of Parallel Computation. II. Binary Tree and FFT Algorithms

نویسندگان

  • Todd Heywood
  • Sanjay Ranka
چکیده

A companion paper has introduced the Hierarchical PRAM (H-PRAM) model of parallel computation, which achieves a good balance between simplicity of usage and reflectivity of realistic parallel computers. In this paper, we demonstrate the usage of the model by designing and analyzing various algorithms for computing the complete binary tree, and the FFT /butterfly graph. By concentrating on two problems, we are able to demonstrate the results of different combinations of organizational strategies and different types of sub-models of the H-PRAM. The philosophy in algorithm design is to maximize the number of processors P that are efficiently usable with respect to an input size N, and to minimize the inefficiency when efficiency is not possible (when Pis too large with respect to N). This can be done because of the H-PRAM's representation of general locality, i.e. both strict and neighborhood locality, and results in algorithms that can efficiently employ more processors (and are thus faster) than algorithms for models that only represent strict locality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An improved algorithm to reconstruct a binary tree from its inorder and postorder traversals

It is well-known that, given inorder traversal along with one of the preorder or postorder traversals of a binary tree, the tree can be determined uniquely. Several algorithms have been proposed to reconstruct a binary tree from its inorder and preorder traversals. There is one study to reconstruct a binary tree from its inorder and postorder traversals, and this algorithm takes running time of...

متن کامل

An improved algorithm to reconstruct a binary tree from its inorder and postorder traversals

It is well-known that, given inorder traversal along with one of the preorder or postorder traversals of a binary tree, the tree can be determined uniquely. Several algorithms have been proposed to reconstruct a binary tree from its inorder and preorder traversals. There is one study to reconstruct a binary tree from its inorder and postorder traversals, and this algorithm takes running time of...

متن کامل

A novel algorithm to determine the leaf (leaves) of a binary tree from its preorder and postorder traversals

Binary trees are essential structures in Computer Science. The leaf (leaves) of a binary tree is one of the most significant aspects of it. In this study, we prove that the order of a leaf (leaves) of a binary tree is the same in the main tree traversals; preorder, inorder, and postorder. Then, we prove that given the preorder and postorder traversals of a binary tree, the leaf (leaves) of a bi...

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS A Parallel Tree Contraction Algorithm on Non-Binary Trees

Parallel tree contraction is an important framework to develop efficient parallel algorithms on trees. Parallel tree contraction gives an appropriate scheduling for parallel computations on trees, and the scheduling brings efficient parallel algorithms to us. While there are many studies for efficient algorithms of parallel tree contraction and implementation of various parallel computations ba...

متن کامل

Practical Parallel Algorithms for Minimum Spanning Trees

We study parallel algorithms for computing the minimum spanning tree of a weighted undirected graph G with n vertices and m edges. We consider an input graph G with m=n p, where p is the number of processors. For this case, we show that simple algorithms with dataindependent communication patterns are efficient, both in theory and in practice. The algorithms are evaluated theoretically using Va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Parallel Distrib. Comput.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 1992